
REMARKS ON CONTRACTIVE PROJECTIONS IN 
Lp-SPACES 

BY 

L. TZAFRIRI* 

ABSTRACT 

The aim of this note is to study the structure of the range of a contractive 
projection in a non-separable Lp-space; I ~ p  < +co. 

A. Grothendieck [4] has proved that if a projection in an L 1-space is contrac- 

tive, i.e. it has norm < 1, then its range is isometric to an L~-space. Later, under 

the assumption that (f~, Z, m) is a finite measure space, R. G. Douglas [2] has given 

a complete characterization of  contractive projections in L~(f~,Z,m) related 

closely to the notion of conditional expectation. Douglas' results have been 

extended by T. Ando [1] for Lp-spaces; 1 < p < + ~ ;  he has proven that a 

contractive projection in an Lp-space; 1 < p < ~ over a finite measure space is 

similar to a conditional expectation and hence, its range is isometric to an Lp-space, 

Obviously, the range of a contractive projection in a separable Lp-space has the 

same structure. 

The purpose of this note is to show that neither the separability of the space 

nor the condition imposed on the measure to be finite (or a-finite) are essential 

and consequently to prove that the range of contractive projection in any Lp-space; 

1 < p < + ~ is isometric to an-Lp-space.  

This result will be used to complete a characterization of Lp-spaces in terms 

of ~ap,z-spaces introduced recently by J. Lindenstrauss and A. Pe~czyfiski [5]. 

We shall need first some measure-theoretical results. 

LEMMA 1. Let (f~,Z,p) be a measure space, J4 a separable subspace of 

Lp(f~,Z,#); 1 < p < oo and T a linear bounded operator on Lp(f2, Z, p). Then 

there exist a set ~2 ~ ~ and a sub (r-ring ~ of Z restricted to ~2 such that: 
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Lp(~,~,]2) is separable and hence (t),~,, I~) is a-finite. 

b) ~ = Lp(t~,'~, #). 

c) Lp(~,~,, I~) is an invariant subspace for T. 

Proof. Assume {f,} is a sequence dense in ~ and 
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m~ 

gn = Z a~n)ZA~i"' 
i = I  

is a sequence of simple functions whose closure contains f~; n = 1,2, .... 

By I3] Lemma 111-8--4 the subring ~1 generated by the sets Ai c")', n = 1,2, ... ; 

i =  1 2, ..., ms is countable. Denote % = {TxAIA e~}. Suppose now that the 

subring &k and the set of functions % have been constructed and &k is countable. 

Let 

P~ 

i = 1  

be a sequence of simple functions whose closure in Lp(f~, Z, I~) contains (fk. Then 

~k+l will be defined as the (countable) subring generated by ~k and the sets 

B~");n = 1,2,..-, I ; i =  1,2..., p~ and~fk+l = {Tza lAe~R÷I} -  
Continuing so we obtain an increasing sequence of countable subrings 

~1 c ~2 c ... c ~k c ... and an increasing sequence of collections of functions 

~1 c~ '2  c - . .  c % ~ . . . .  Set ~ =  {J~°= 1 ~k, a = ~.JA~ and let Zbethesub-  

a-ring generated by ~.  Since ~ is a countable subring the simple functions over 

are dense in Lp(~, Z, p) (cf. [3] Lemma III-8-3) and thus Lp(~, Z, #) is separable. 

Evidently ~ l  = Y, implies condition b. To prove that condition c holds let us 

remark that if A e ~k for some k then TXa e % and therefore TZA can be approxi- 

mated (in Lfnorm) by simple functions over ~k+t = '~" It follows that T maps 

simple functions over ~ into Lp(~, Y,,/0 and this completes the proof. Q.E.D. 

REMARK. For the particular case in which T is the identity operator Lemma 1 

is proved in [3] Lemma III-8-5. 

LEMMA 2. Let (~' ,Y, ' ,p')  be a a-finite measure space. Then any closed 

subspace ~ of Lp(f~ ,5". ,#  ), 1 < p < + oo contains a function with maximum 

support. 

Proof. This result has been proved by T. Ando [1] Lemma 3 for finite measures 
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and can be extended to our case since Lp(f~',Z',it') is isometric to a space 

Lv(f~',Z',#" ) ((where It"(A) = Sa ¢(co)#'(dco); A e Z' for some function 

?p ~ LI(I)',  Z ' ,# ' )  satisfying 0 < ¢(co)< 1; co e f~') with #" being a finite measure 

and under this isometry the support is preserved. Q.E.D. 

LEMMA 3. Let P be a contractive projection in Lp(fl,Z,it); l__<p ~ 2 < + oo. 

I f  Pg = g for  some g~Lp(g) ,Z,#)  and Z' denotes the restriction of Z to f~' = S(g) 

then Lp(fV, Zf, p) is invariant under P and the measure space (fl', Z', It) is a-finite. 

Proof. Consider a function heLp( f~ ' ,Z ' ,# )  and let ~ '  be the (finite- 

dimensional) subspaee generated bv g, h and Ph. Using Lemma 1 for the subspace 

J / / and  the operator P we obtain a separable subspace Lv(f), E, It) of Lp(~,Z, It) 

which is invariant under P and contains g, h and Ph. Let u be a function with 

maximum support in PLv(~, Y,, It). Such a function exists in view of Lemma 2 

since Lv(t),Z, lt ) is a-finite. Now let us set G =  S(u), v(A)= SAlu(co)lvit(dco) 

where A belongs to the restriction Zo of Z to G. The operator Q in Lv(G,~,,av) 

defined by 

P(uv) 
QV ~ 

U 

is obviously a contractive projection which leaves invariant the function 

1 e Lp(G, Y,o, v). By T. Ando [1] Theorem 1 and R. G. Douglas [2] Corollary 1 

Q is a conditional expectation relative to some sub a-field Eu of Z~. 
Thus Q(h[u) = Ph/u and Q(g/u) -- Pg/u = g/u are Zu-measurable functions, in 

particular S(g) e Z.. It follows that 

h lulPdit=O 

for every A e Y,, ; A c S(u) - S(g). Hence Ph/u = Q(h/u) = 0 outside S(g) and 

and this completes the proof. Q.E.D. 

LEMMA 4. Let (~),Z,it) be a general measure space and P a contractive 

projection in Lp(fl, Z,D; 1 =< p ~ 2 < + oo. For every f eLp(fl, Z, It) satisfying 

P f = f  define 

X~. = {P(hf )  I h f  e Lp(fl, Z, It)} 

Then X s is a closed subspace of the range of P isometric to Lp(S(f) ,  Zs, If] ~ dl~) 

where Z s is a sub-a-field of Zstf) (the restriction of Z to S(f)) .  Moreover, the 

unctions f . ~,i~ l aiz6, ; 6~ e Z s are dense in X s. 
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Proof.  Consider  f e L~(f~, E, #) satisfying Pf  = f and define 

P(h f )  
Qj, h -  f 

In  view o f  L e m m a  3, Q¢ is a contract ive project ion in Lp(S(f),Es(f) , If]Pdp) 

for  which Qj,1 = 1. Since IflPdF, is a finite measure,  by T. Ando  [1] Theorem 1 

and R. G. Douglas  I2] Corol lary  1, Qf will be a condi t ional  expectat ion relative 

to a sub-a-field Z s o f  Estf) and therefore QfLp(S(f), Y's~¢), [fl d ) = L~(S(f),  Zf, 

IflPdlt). The correspondence Qih~-+fQfh=P(h f )  establishes an i sometry  

between Lp(S(f), Zf, IflPd#) and X s. The last assert ion of  the l emma  follows 

f rom the fact that  simple funct ions are dense in LpS(f), El, I f [  Pd#). Q.E.D.  

REMARK. The  idea o f  considering the opera tor  Qy is found in T. Ando  [1]- 

LEM~CtA 5. Let (~,E,#)  be a general measure space and P a contractive 

projection in Lp(f~,E,p);  1 < p ~ 2 <  ~ .  Then the collection of sets 

8 = {e I There exis ts feLp( f~,Y,p);  P f = f  such that S ( f )  = e} 

is a sub a-ring of Z, (sometimes without maximal element). Furthermore, for  

f = P f  and e = S( f )  a subset e o = e belongs to 8 if and only if eo e E I (defined 

in the previous lemma) and then P ( f  Zeo) = f Zeo. 

Proof .  Let  f i  e Lp(f~,Y.,/0; i =  1,2 be such tha t  Pf~ =f~ and  e~ = S(f~). I f  

e = el L) e2 then obviously  (e, Ee, p) is a a-finite measure space and hence there 

exists at  least one number  ct for  which S(f l  + ~f2) = e. Set f =./'1 + ~f2 and find 

h~ such that  f~ = hi]'; i = 1,2. Using the opera tor  Qf defined in the p r o o f  o f  the 

previous l emma  we have Qyh i = f~/f and since Qf  is a condi t ional  expecta t ion 

relative to Ey e, = S(fi) = S ( f J f )  = S(Q s hi) e Zs;  i = 1, 2. Thus e 1 u e2, e~ - e 2 ~ Zf  

which implies QsZe~,~e~=Ze,~. and Qfx~,-,: = X~,-~. Then the def ini t ionof  Qf 

leads to P(ze~oe~f) = Z~,o~zf and P ( X ~ - e J ) =  Ze~-~2f i.e. e x N e2, e 1 - e 2 f ig .  

NOW consider e = [..J~= 1 e,; e. = S(f,) ;f, = Pf , ;  n = 1,2, .... In  view of  the first par t  

o f  the p roo f  we can assume that  e,  are disjoint. Then f(cn) = ] ~ =  ~f,(oJ)/2" ltf~ [I 

satisfies P f = f  and e = S( f )  i.e. e e S .  

In order  to prove  the last s ta tement  let us observe that  if  eo e g ;  e o = S(fo) ;  

fo = Pfo and h o has been chosen such that  fo = hof  then Qfho = f o / f  and 

S(fo) = S(Qfho)eE s. Therefore  Qj'Z~o = Zeo i.e. P(z~of) = Z~of. Conversely,  if  

e o e Z f  then QIZ~o = Zeo and again  P(Zeof) = Z~of which implies S(Z~of) = eo e g. 

Q.E.D.  
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Tr~OREM 6. Let (~),iE,/~) be a general measure space and P a contractive 

projection in Lp(f2,E,/0; 1 < p < + ~ .  Then the range of P is isometric to an 

Lp-space. 

Proof. Since the theorem is trivial for p = 2 we can assume with no loss of  

generality that p ~ 2. Preserving the notation used in the previous lemmas we will 

consider the family of collections of disjoint sets from 8 and order it by inclusion. 

By the lemma of Zorn this family has a maximal element {er}, e~ e 8 and there 

exist freLp(f~,Z, lO such that Pfr=fr  and e~=S(fr). Obviously, for each 

e e 8  #(e n e~)=0 for every ~ with the exception of countable set {~,}. The 

maximality of the collection {%} and Lemma 5 willimply that e = U~= 1 (e n er. ) 

and this decomposition is unique. Define 

I f~.(c~) if °~¢e 
g~(og) = if 02 e e ~ e~.  

1 2"l/f,. l] 

Evidently, g~eLp(f~,Z, lO, S(g~)=e and Pg~=g~. Indeed, by Lemma e n e r e 8  

and P(fr.z~,er.) = f r . z ~ r .  which gives Pge = ge" 

Let {6i}~'=1 be a partition of e with sets 5i e Eg. (defined by Lemma 4) and 

X(ge, {6i}) the finite dimensional subspace spanned by the vectors zJ,g~. By the 

last part of Lemma 4 

x .  = u x(g,, 

where the union is taken over all possible partitions of e with sets 5 i e Zg. Since 

every f belonging to the range of P can be written as hg~ with e=S(f)  we obtain 

f e Xg. and further 

PLp(~, Z, p) = k9 X(ge, {6,}) 

where the union is taken over all sets e e o ~ and partitions {~i} ofe with sets from Eg. 

Next we shall show that finite dimensional subspaces X(ge, {5i}) form a net. 

Indeed, let us prove that X(ge,, {6i}) and X(ge2, {a j}) are contained in X(g,, {qk}) 

where e = et u e2 and {qk} is the common refinement of {fit} and {a~}. Since 

6i e Ego,, it follows from Lemma 5 that 6i e Eg. and in the same way a1 e Eg.. Thus 

their common refinement {qk} is a partition of e with sets from Eg. Furthermore, 

for any o~ e qk cO e e U e~ o (since e = U,°°_- t (e n e~.)) and 02 e e I n ea. ° (since 

e 1 = U ~ = l ( e l  n eB_) ). Consequently, e~_o = ea_° = e r  and 
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f~(¢o) f~(¢o) 

Z ' ~ ( ° ~ ) g ' ( ~ )  = 2% lid I----7' = 2"0 IIS, I1 
We have to mention that e,,, e~,. and e~ are sets from the maximal collection 

defined in the beginning of this proof. 

In conclusion the range of P can be expressed as the closure of the union of a net 

of  finite dimensional subspaces X(ge, {6i}), each of these isometric to l ; ;  

(n = dim X(ge, {fit}))); the space of sequences (cD ..., c,) with the norm (]~L11c,]P) t/p 

(by Lemma 4 X(g,,  {6,})is isometric to the subspace ofLp(e, Xo,, [ g~ [ Pdp) generated 

by X,~ e Zg~ ; i = 1,..., n). Such a space is called N~,p and it has been proved recently 

by M. Zippin [6] Theorem 11.6 that a Banach space X is NLp if and only if it is 

isometric to an Lp-space. This completes the proof. Q.E.D. 

According to J. Lindenstrauss and A. Petczyfiski [5], Definition 3.1, a Banach 

space X is called an Lap, a ; 1 < p < + 0% 1 < 2 < + 0% if for every finite dimen- 

sional subspace B of X there exists another finite dimensional subspace E of  X 

containing B and a linear operator zE from E onto l~; n = d i m  E, such that 

[I  .l111 z 'il _-< 2 They have proved in [5] Theorem 7.1 that for every L a a  

space X,  1 < p < ~ there exists an an Lp-space Y and a projection P in Y having 

the norm IIP II --- ~ whose range is isometric to X. Using this fact and Theorem 6 

we obtain the following result. 

COROLLARY 7. A Banach space X is isometric to an Lp-space; 1 < p < + co 

if  and only i f  it is an £Pp,~ space for every 2 > 1. 

Proof. For p = 1 the proof has been given in [5] Corollary 5 of  Theorem 7.1. 

For 1 < p < ~ it follows from the fact already remarked that X is isometric to the 

range of a contractive projection in an Lp-space and thus, by Theorem 6, X itself 

is isometric to an Lp-space. Q.E.D. 

REMARK. J. Lindenstrauss and A. Petczyfiski [5], Corollary 4 of Theorem 7.1 

proved Corollary 7 under the assumption that X is separable, using instead of  

Theorem 6, the weaker version given by T. Ando [1], Theorem 4 for Lp-spaces 

over finite measure spaces. 
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