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ABSTRACT

The aim of this note is to study the structure of the range of a contractive
projection in a non-separable L,-space; I < p < +w.

A. Grothendieck [4] has proved that if a projection in an L ;-space is contrac-
tive, i.e. it has norm £ 1, then its range is isometric to an L;-space. Later, under
the assumption that (Q, Z, m) is a finite measure space, R. G. Douglas[2] has given
a complete characterization of contractive projections in L,(Q,X,m) related
closely to the notion of conditional expectation. Douglas’ results have been
extended by T. Ando [1] for L,-spaces; 1 < p < +o0; he has proven that a
contractive projection in an L,-space; 1 < p < oo over a finite measure space is
similar to a conditional expectation and hence, its range is isometric to an L,-space,
Obviously, the range of a contractive projection in a separable L,-space has the
same structure.

The purpose of this note is to show that neither the separability of the space
nor the condition imposed on the measure to be finite (or o-finite) are essential
and consequently to prove that the range of contractive projection in any L ,-space;
1 = p < + 00 is isometric to an— L -space.

This result will be used to complete a characterization of L,-spaces in terms
of &, ;-spaces introduced recently by J. Lindenstrauss and A. Petczynski [5].

We shall need first some measure-theoretical results.

LemMAa 1. Let (Q,2,u) be a measure space, # a separable subspace of
L(Q,Z,u); 1 Sp< o and T a linear bounded operator on L(Q,Z,1). Then
there exist a set 0 € £ and a sub o-ring £ of T restricted to O such that:
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a) L,(0,%,p) is separable and hence (3,'Z, i) is o-finite.
b) # < L(G,E, ).
c) LI,(Q, %, W) is an invariant subspace for T,

Proof. Assume {f,} is a sequence dense in # and

m.

& = Z agn)x“:n)

i=1

is a sequence of simple functions whose closure contains f,; n=12,-.
By [3] Lemma ITI-8-4 the subring &, generated by the sets 4 n=1,2,--;
i=12,--,m,is countable. Denote ¥, = {Ty, ] Ae%,}. Suppose now that the

subring %, and the set of functions %, have been constructed and %, is countable.
Let

be a sequence of simple functions whose closure in L,(Q,Z, 1) contains ;. Then
B+, will be defined as the (countable) subring generated by %, and the sets
B"™;n=1,2, oy si=1,20, p,and G,y = {TXAIAE%,H}.

Continuing so we obtain an increasing sequence of countable subrings
By <B, < - B, < - and an increasing sequence of collections of functions
€ cbc..cBo. St B=|Jry B O = |Jala and let % be the sub-
o-ring generated by . Since % is a countable subring the simple functions over %
are dense in L,(Q, £, ) (cf. [3] Lemma III-8-3) and thus L&, %, ) is separable.
Evidently #, < £ implies condition b. To prove that condition ¢ holds let us
remark that if 4 € %, for some k then Ty, € %, and therefore Ty, can be approxi-
mated (in L,-norm) by simple functions over %;.; < 3. It follows that T maps
simple functions over # into L,(Q, %, 1) and this completes the proof.  Q.E.D.

REMARK. For the particular case in which T is the identity operator Lemma 1
is proved in [3] Lemma II1-8-5.

LEMMA 2. Let (Q,X',4") be a o-finite measure space. Then any closed
subspace # of L(Q',Z',p'); 1 £ p < + 0 contains a function with maximum
support.

Proof. This result has been proved by T. Ando [1] Lemma 3 for finite measures
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and can be extended to our case since L, (Q',Z’,p’) is isometric to a space
L Q"2 u") ((where p'(4) = [, ¢p(o)u'(dw); A € X' for some function
¢eL,(Q,Z,u) satisfying 0 < ¢(w) £ 1; weQ’) with u” being a finite measure
and under this isometry the support is preserved. Q.E.D.

LEMMA 3. Let P be a contractive projection in L(QZ,1); 1Sp#2< + .
If Pg = g for some ge L,(Q,%, i) and X' denotes the restriction of ¥ to Q' = S(g)
then L(Q', X/, u) is invariant under P and the measure space (Q',%’, u) is a-finite.

Proof. Consider a function heL,(Q',X,u) and let # be the (finite-
dimensional) subspace generated by g, h and Ph. Using Lemma 1 for the subspace
# and the operator P we obtain a separable subspace L,,(Q, 3, w of L(Q,Z, 1)
which is invariant under P and contains g,k and Ph. Let u be a function with
maximum support in PL,(Q, %, ). Such a function exists in view of Lemma 2
since L((3,%, 4) is o-finite. Now let us set G = S(u), (4) = f4]u(w) [Pu(dw)
where A belongs to the restriction Z“.G of £ to G. The operator Q in L,(G, 5:,6 1))
defined by
_ P(uv)

u

Qv

is obviously a contractive projection which leaves invariant the function
1€ L,(G,Zs,v). By T. Ando [1] Theorem 1 and R. G. Douglas [2] Corollary 1
@ is a conditional expectation relative to some sub o-field T, of f‘@.

Thus Q(h/u) = Phlu and Q(g/u) = Pg/u = g/u are I,-measurable functions, in
particular S(g)e X,. It follows that

h h
[, QG )lutran = [, 5 lupran=o

for every A€Z,; A = S(u) — S(g). Hence Ph/u = Q(hu) =0 outside S(g) and
and this completes the proof. Q.E.D.

LEMMA 4. Let (Q,Z,u) be a general measure space and P a contractive
projection in L(Q,Z,p4); 1 S p#2 < +00. For every feL,(Q,Z,p) satisfying
Pf=f define

X, ={P(hf)| hf € L(Q,%, u)}
Then X, is a closed subspace of the range of P isometric to L(S(f),X;, I f l" dp)

where L is a sub-o-field of X, (the restriction of T to S(f)). Moreover, the
unctions f - X2 a5, ; 6,€ X, are dense in X ;.
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Proof, Consider f e L,(Q,Z, p) satisfying Pf = f and define

P(h
0h =100

In view of Lemma 3, Q, is a contractive projection in L, (S(f),Zg), l f I"du)
for which Q1 = 1. Since | f I”dﬂ is a finite measure, by T. Ando [1] Theorem 1
and R. G. Douglas [2] Corollary 1, Q, will be a conditional expectation relative
to a sub-o-field X, of Xg,, and therefore Q L, (S(f), Zs(s) [ f ]”dﬂ) = L,(8(f), Z,
l f l”du). The correspondence Q;h < fQyh = P(hf) establishes an isometry
between L,(S(f), Xy, I f l"dy) and X, The last assertion of the lemma follows
from the fact that simple functions are dense in L,S(f),Z,, I f | Pdu). Q.E.D.

Remark. The idea of considering the operator @, is found in T. Ando [1]-

LEMMA 5. Let (Q,Z,u) be a general measure space and P a contractive
projection in L,(Q,X,u); 1L p#2< co. Then the collection of sets

& = {e| There exists f e L(Q,Z, n); Pf =f such that S(f) = e}

is a sub o-ring of I (sometimes without maximal element). Furthermore, for
f=Pf and e = S(f) a subset e, < e belongs to & if and only if e; €, (defined
in the previous lemma) and then P(f1,,) = f Ye,-

Proof. Let fieL,(Q,Z,n); i=1,2 be such that Pf,=f; and ¢;= S(f). If
e =e; U e, then obviously (e,Z,, ) is a o-finite measure space and hence there
exists at least one number a for which S(f; + af,) = e. Set f=f, + af, and find
h; such that f; = hyf; i = 1,2. Using the operator Q, defined in the proof of the
previous lemma we have Qch; = f;/f and since Q is a conditional expectation
relativeto X, ¢, =S(f)= S(fil)=8@rh)eZ;;i=1,2.Thuse, Ue,,e; — e, ex,
which implies Q¥ ne,=Xeine,r 204 @ ¥, - ey = Xe,—e,- Then the definitionof Qs
[6adS 0 P(feynesf) = YernenS 800 P(ley-eaf) = urof B0 €4 O €3, €, — €, € 8.

Now consider e=| ), ¢,;€,=S(f,); fy=Pf,;n = 1,2, . In view of the first part
of the proof we can assume that e, are disjoint. Then f(w) = X%, f(@)/2"] f, ”
satisfies Pf = f and e = S(f) i.c. e &.

In order to prove the last statement let us observe that if e € &; e, = S(f,);
Jo=Pfo and h, has been chosen such that f, =hof then Q;hy = fo/f and
S(fo) = S(Qsho)eZ;. Therefore Qye, = xoy i€. P(Yo,f) = Xe,f- Conversely, if
eo€ Xy then Qy, = x,, and again P(x, f) = Xeo/ Which implies S(x..f) = ¢, € 6.

Q.E.D.



Vol. 7, 1969 CONTRACTIVE PROJECTIONS 13

THEOREM 6. Let (Q,Z,u) be a general measure space and P a contractive
projection in L(Q,Z,p); 1 £ p < + 0. Then the range of P is isometric to an

L,-space.

Proof. Since the theorem is trivial for p = 2 we can assume with no loss of
generality that p #~ 2. Preserving the notation used in the previous lemmas we will
consider the family of collections of disjoint sets from & and order it by inclusion.
By the lemma of Zorn this family has a maximal element {e,}; e,e & and there
exist f, e L,(Q,Z, 1) such that Pf,=f, and e, = S(f,). Obviously, for each
ecé ple N e,)=0 for every y with the exception of countable set {y,}. The
maximality of the collection {e,} and Lemma 5 willimply that e = U:°= iene,)
and this decomposition is unique. Define

0 if oge
8®) =1 frw) :
{ZZ”fv.. ” if weene, .

Evidently, g, e L(Q,%, ), S(g.)=e¢ and Pg,=g,. Indeed, by Lemma ¢ N e, €8
and P(f, Xeney,) =y, Xeney, Which gives Pg, = g,.

Let {0;}i=; be a partition of e with sets §,e X, (defined by Lemma 4) and
X(g.,{0:}) the finite dimensional subspace spanned by the vectors y;,g.. By the

last part of Lemma 4

X, =V X(g..{6:})

where the union is taken over all possible partitions of e with sets §;€ Z,,. Since
every f belonging to the range of P can be written as hg, with e=S(f) we obtain
feX,, and further

PLQ,%, 1) = U X(g. (0:))

where the union is taken over all sets e € & and partitions {,} of e with sets from Z,.

Next we shall show that finite dimensional subspaces X(g,, {5;}) form a net.
Indeed, let us prove that X(g,,{d;}) and X(g,,, {c,}) are contained in X(g,, {n})
where e =e; U e, and {1} is the common refinement of {5} and {o,}. Since
0;€%,,, it follows from Lemma 5 that 5,€ X, and in the same way ¢,€ X, . Thus
their common refinement {1} is a partition of e with sets from X, . Furthermore,
for any wen, wee U €., (since e= U,‘f;l(e Ne,)) and wee; N ., (since
e; = Jm=1(e; M ¢;.)). Consequently, e, =¢, =e,and
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f{(w) flw)
A @)8l@) = 3 Xy, (0)ge (@) = ———.
o] s, 2% £

We have to mention that e, , e; and e, are sets from the maximal collection

defined in the beginning of this proof.

In conclusion the range of P can be expressed as the closure of the union of a net
of finite dimensional subspaces X(g,, {6;}), each of these isometric to I;;
(n = dim X(g., {6,}))); the space of sequences (c;, -+, ¢,) with the norm (X~ |¢;|") /7
(by Lemma 4 X(g,, {3;})isisometricto the subspace of L (e, %,,, | g. I Pdy) generated
by x5, €Z,,;1=1,---,n). Such a space is called N, ,and it has been proved recently
by M. Zippin [6] Theorem 11.6 that a Banach space X is N, , if and only if it is
isometric to an L,-space. This completes the proof. Q.E.D.

According to J. Lindenstrauss and A. Pelczynski [S], Definition 3.1, a Banach
space X iscalledan £, ;;1 < p £ 4+, 1 £1 < + oo, if for every finite dimen-

sional subspace B of X there exists another finite dimensional subspace E of X
containing B and a linear operator 7z from E onto I;; n=dim E, such that
|5 ||75" | £ 4. They have proved in [5] Theorem 7.1 that for every <&, ,
space X; 1 < p < co there exists an an L,-space Y and a projection P in Y having
the norm || P|| < A whose range is isometric to X. Using this fact and Theorem 6

we obtain the following result,

CoROLLARY 7. A Banach space X is isometric to an Ly,-space; 1 S p < 4+
if and only if it is an &, ; space for every 1 > 1.

Proof. For p =1 the proof has been given in [S] Corollary 5 of Theorem 7.1.
For 1 < p < oo it follows from the fact already remarked that X is isometric to the
range of a contractive projection in an L,-space and thus, by Theorem 6, X itself
is isometric to an L,-space. = Q.E.D.

Remark. J. Lindenstrauss and A. Pelczynski [5], Corollary 4 of Theorem 7.1
proved Corollary 7 under the assumption that X is separable, using instead of
Theorem 6, the weaker version given by T. Ando [1], Theorem 4 for L,-spaces

over finite measure spaces.
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